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Abstract

The first author of this paper established an approach to study the multivariate spline over arbitrary partition, and presented the
so-called conformality method of smoothing cofactor (the CSC method). Farin introduced the B-net method which is suitable for study-
ing the multivariate spline over simplex partitions. This paper indicates that the smoothness conditions obtained in terms of the B-net
method can be derived by the CSC method for the spline spaces over simplex partitions, and the CSC method is more capable in some

sense than the B-net method in studying the multivariate spline.
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1. Introduction

Splines are piecewise polynomials with certain smooth-
ness. The first author of this paper established the basic
theory on multivariate spline over arbitrary partition,
and presented the so-called conformality method of
smoothing cofactor (the CSC method) which is suitable
for studying the multivariate spline over arbitrary partition
[1].

In this paper we take the bivariate spline as an example
to prove that the CSC method and the B-net method are
equivalent over simplex partitions. The CSC method and
the B-net method on bivariate spline spaces are presented
in Section 2. In Section 3, we derive the smoothness condi-
tions over triangulation with the CSC method, which are
the same as the smoothness conditions presented by Farin
[2,3]. Finally, we indicate that the CSC method and the
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B-net method are equivalent for multivariate spline spaces
over simplex partitions.

2. Bivariate spline spaces

Let D be a domain in R, P, the collection of all these
bivariate polynomials with real coefficients and total degree
no more than k, i.e.,

ki
P, = {p = Z Zci/xi)/|cij € R}

k
i=0 j=

Using a finite number of irreducible algebraic curves to car-
ry out the partition 4 of the domain D, then the domain D
is divided into N sub-domains Jy,. .., dy, each of such sub-
domains is called a cell of 4. These line segments that form
the boundary of each cell are called the edges, intersection
points of the edges are called the vertices. If two vertices are
two end points of a single edge, then these two vertices are
called the adjacent vertices. The vertices which are not
lying on the boundary of domain D are called interior
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vertices. The space of bivariate spline with degree k and
smoothness y over 4 is defined by

Si(4) == {s € C*(D)ls|;, € Py, i=1,...,N}

2.1. The conformality method of smoothing cofactor

Theorem 1. [1]. Let the representation of z = s(x,y) on the
two arbitrary adjacent cells D;, and D; be

z=px,y), and z=pix,y)
where z = p;(x,y), and z = p,(x,y) € Py, respectively. In

order to let s(x,y) € C*(D;\JD;), if and only if there is a
polynomial q;;(x,y) € Py_(u1)a> such that

pixe,y) = py(x,y) = (Lo, )" - g,(x,) (1)
where D;, and D; have the common interior edge

ry: lij(an’) =0

and the irreducible algebraic polynomial 1;;(x,y) € P,.

The polynomial g;;(x, y) defined by Eq. (1) in Theorem 1
is called the smoothing cofactor of s(x, y) across I';; from D;
to D;.

Let 4 be a given interior vertex over partition 4, the
conformality condition at A is defined by

D e )" gy y) =0

where >, presents the summation of all the interior edges
around 4, and g;;(x,y) is the smoothing cofactor across I';;.

Let Ay,...,A4, be all the interior vertices over partition
A. The global conformality condition is defined by
Z[lij(xvy)]“Jrl 'qij(xay) EO, v= lv”'aM (2)
Ay

Theorem 2. [1]. Let A be any partition of D. The bivariate
spline function s(x,y) € S}(A) exists, if and only if for every
interior edge, there exists a smoothing cofactor of s(x,y), and
the global conformality condition Eq. (2) is satisfied.

Definition 1. [1]. The partition 4 is called a cross-cut parti-
tion, if all the edges are lying on some straight lines cross-
cutting domain D. We call a partition to be quasi-cross-cut
denoted by 4., if each edge in this partition is either a part
of cross-cut or a part of rays in D.

Definition 2. [1]. The union of all the cells sharing the same
interior vertex V'is called the relative region (or star-region)
of the interior vertex V.

Let Vy be the solution space corresponding to the con-
formality condition at an interior vertex, where N is the
number of lines passing though this interior vertex, and
having different slopes. The dimension of ¥y is presented
as follows.

Lemma 1. [4].

1 u+1
1 — — _ | —_
dk(N)_z(k a |:N_J>+
u+1

.((N—l)k—(N+1)u+(N—3)+(N—1)[HD (3)

Theorem 3. [4]. Let A, be a quasi-cross-cut partition of a
simply connected region, A, have L, cross-cuts, L, rays,
and 'V interior vertices Ay,...,Ay. Denote by N;, i=
1,...,V the number of cross-cuts, and rays passing through
A;. We have

k+2 k—u+1 u
dimSt(A,0) = < ) > +L1< ’; > +) di(Ny)
i=1

(4)
where di\(N) is given in Eq. (3).

2.2. The B-net method

The B-net method is suitable for studying the spline
functions over arbitrary simplex partition. Now we intro-
duce the main idea of the B-net method of bivariate spline
spaces over simplices [3].

It is well known that any point x in the plane can be
uniquely expressed in terms of barycentric coordinates with
respect to any nondegenerate triangle A with vertices
vy, vy, U3 (see Fig. 1, left):

X = T|1U] + ToUy + T303

where 7:=(11,75,73) is usually normalized by the
requirement
T+ 1T+ 13= 1

and the coefficients 7 := (7, 1,,73) are called the barycen-
tric coordinates of x over the triangle A.
We have

_det(v, — x,v3 —x)

_det(v; —x,v3 —x)
e det(vy — vy, v3 — v1)’

T det(vy — vy, v3 — v2)’

det(vy — x, vy — X)

e det(vy — v3,v3 — v3)

An important property of barycentric coordinates is
affine invariance.

Vi V2

il

V)
Vs V3

Fig. 1. Triangle A (left) and two adjacent triangles, 7" and T (right).
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Let
A= (A, A0, 4), A=A +Ah+A=n Al=41415
Bernstein polynomials of degree n over a triangle are
defined by
; n! n! i
B = = aaa
lheZ,,i=1,273

Jo 23

1715215, A+t Ay =n,

There are many properties of Bernstein polynomials [5],
such as

(1) B;’(’C) =0, ifren= [01,02,1]3].

(2) Zw:nBﬁ(T) =1
(3) {Bi(1), |A| = n}is a basis of the polynomial space P,.
(4) B%(7) has a unique maximum value at point t = .

n

From property (3), we have

Lemma 2. [S]. Any polynomial P € P, can be uniquely
expressed as

P(x) = bB}(x) (5)
|A|=n

where {b;, |\| = n} are called the Bézier coordinates of P(7)

over A, the piecewise linear function interpolating to

{(%,b;) : |2| = n} is called the Bézier net of P(t) over A,

B-net for shot.

Let vy, vy, v3 be the vertices of triangle 7, and 7, vs, v3
be the vertices of triangle T. T and T have the common
boundary v,v; (see Fig. 1, right). The smoothness condi-
tions of polynomials of degree n over two adjacent triangles
are presented as follows.

Theorem 4. [3]. Let P(t) and P(t) denote polynomials of
degree n defined on T = [v1,v2,v3], and T = [01, v, v3],
respectively. Let {b;, |\| =n} and {b,;, |}| =n} be the
Bézier coordinates of P(t) over T and P(t) over T,
respectively. A necessary and sufficient condition for P(t)
and P(t) to be C" across the common boundary is

by =bo(a), t=0,1,--r (6)

where

bi(o) =Y biB(0); A =n—r (7)
=

6 is the barycentric coordinate of v, over T,

M= (t,22,73), X =(0,22,23), o+ I3=n—t.

Definition 3. [6]. Let 4 denote the simplex partition on
domain D, and let I denote the set of control points of a
spline in S¥(A). A subset ACT is a determining set for
Si(n) if

s(x) =0, VxeA=s(x)=0, Vxe T

A is a minimal determining set if there is no smaller deter-
mining set.

3. Deriving the B-net method with the conformality method
of smoothing cofactor

By the definition of the barycentric coordinates, we have

Lemma 3. Let b" (%), and ¢*(t) denote polynomials of degree
k defining over two adjacent triangles T = [01, 02, 03] and
T = [vy,v2,03), respectively. Denote by a(a1,02,03) the
barycentric coordinates of vy over T. The relations between
the barycentric coordinates over the adjacent triangles are as
follows

T, =017, T2=02:T+7T, T3=03-T+7T3 (8)

3.1. S4(A) over two adjacent triangles

Denote by 5*(7) and ¢’(t) the bivariate polynomials of
degree 3 defining over two adjacent triangles T = [V, v2, 03]
and T = [vy, v, v3], respectively (see Fig. 2).

Let {b, : |n| =3} and {c, : |A| = 3} be the Bézier coordi-
nates of 5*(z) over T and ¢ (t) over T, respectively. Denote
by o(a1,02,03) the barycentric coordinates of v; over T.
The expression of b*(7) is

b%(%) = Z an;’;(‘AL') = b;o@)%% + 3[)2}1’0%%%2 + 3[)1;0%1%5

=3
+ bo3ots + 3b02173%5 + 3bo 1 212EE + boo st
+ 3b102%113 + 3b201%15 + 6b1 11111213
By Lemma 3, we have
=011, =0T+, 3=03T+7T
Denote
my = a1bso0 + 307026210 + 36105b120 + 53030
+ 3a§a3b0,271 + 30205507172 + 6250,0,3 + 3010§bl,0,2
+ 30703b20,1 + 6010203b1 11
my = U%bz,l,o +20102b1 20 + Oébo,},O +26203b02,1 + 0§b0~112
+20103b111
my = a1byg1 + 20102b1 11 + 63bo21 + 20203b0 12 + 03boo3

+ 20103b1 9,
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From Eq. (8),

b3(%) = mlrf + 3m2‘cffz + 3m3rfr3 + 3(01b120 + 02b030
+ Uzbo,z,l)‘flfg +3(01b102 + 02b0 12 + 03bo,o,3)T1T§
+6(a1b111 + 02bo21 + 03bo12)T1T2T3 + bo,3.o‘f§
+ 3boAz,1fifa + 3b0,1,2fzf§ + bqo,ﬂ%

The expression of ¢*(z) is

3 3 3 2 2
c(r) = g ¢;B3(1) = c3007] + 3¢2107172 + 3¢120T17;
=]

3 2 2 3 2
+ 03075 + 3€02,175T3 + 30127275 + Co0,3T3 + 31027175

>
+ 3¢20,1 7173 + 61 1,1TIT2T3

Notice that the expression of the common boundary v,v; is
7, =0. Let b°(%), and c*(r) be C' across the common
boundary. By Theorem 1, there is a polynomial ¢(z) of de-
gree 1, such that

3 3oy 2
c’(v) = b°(7) = q(1)7;
So
Co30 = 50,340, Co21 = b0,2,17 Co12 = bo,l,z, €003 = bo,o,3
€120 = 01b120 + 02D 30 + 03b0 21
€102 = 01b102 + 020012 + 03b0 3
ciig =01b111 + 02boa1 + 03bo 12

It indicates that the necessary and sufficient conditions for
polynomials of degree 3 defining over two adjacent trian-
gles to be C! across the common boundary are that the Bé-
zier coordinates of the two polynomials satisfy the relations
above. This is the same as Theorem 4.

Moreover, we obtain the expression of the smoothing
cofactor across the common boundary v,v3

q(t) = (e300 — ml)T? +3(ca10 — mz)ﬁfz + 3(c201 — m3)rfr3

Next, we derive the smoothness conditions obtained from
the B-net method with the conformality method of smooth-
ing cofactor.

3.2. S¥(4) over two adjacent triangles

Theorem 5. Let b*(%) and c*(x) denote polynomials of
degree k defining over two adjacent triangles T = [01, v, v3]
and T = [v1, 02, 03], respectively. Let {b,: |11\fk} and
{c;: |A| =k} be the Bézier coordinates of b*(%) over T
and c*(t) over T, respectively. Denote by a(a1,02,03) the
barycentric coordinates of vy over T. Let A=TT,
s(x,y) € Si(8), pi(x,¥), and py(x,y) be the expressions of
s(x,y) over T and T, respectively, where p,(x,y) and
Pa2(x,y) € Py. Then the following conditions are equivalent to
each other.

(i) There is a smoothing cofactor ¢g(x,y) € Py_,_; across
the common boundary v,v;, such that

P, y) = pr(x,y) = q(x,) - 1(x,p)""! )

where /(x,y) = 0 is the equation of v,vs.
(ii)
Cy :bio(O'), 12071,"',/1 (10)
where ) = (t,22,73), 2°=(0,)0,23), o+ 23 =k —t.

Proof. By Lemma 2, b*(%) and cf(1) can be expressed as

= bBi(2) = b, %‘Eﬂ (11)

[n|=k [n|=k
and
k k k!,
)= eBi(x) = ¢yt (12)
|/|=k |2|=k
From Eq. (8)
e k! m m 3
b = b"m(al'ﬂ) (02- 11+ 12)"% (03 11 +73)"
=k e
112 ]7 3 ]7 . . .
. ’Il '7] 2 g T ,L.'l7 < .3 )OJ,LJI.’M*]
Mzk ,,1.,1,,,[7()(,)212;]
M2 3
_ ”lz)( ) U ‘o"‘t"'+l+’r"’ 11*13 J
. 3 1 ; it
— m i mtitj _mn—i_nz—j
Mz;c ! ,»2:0: /Z(; (ny = D)(ny = 7)lily! 7 azazrl 2T
Denote

ri=(rrars) = b)), | rl= Ao m—i=do, iy —j =43

It is clear that

M = 5 +i, 3= 23 + /s

1= (M, n3) = (0,42, 43) + (r1,72,73)
So b*(%) can be simplified as

k! ~
@)=Y Y b0

115!
(A= 1= }".}Q./q.

k! i
Z Zb0/2)3 +(r1,72,3) V'AQ')\.% T (13)
Comparing Eq. (12) with Eq. (13), we have
. . 1
CA(T)_bk(T):Z ( Zbowix +(r1rar3)
|2]=k : [r[=A1

[AJ=k |r|=1
r k' )v
YAVEL
Let 4, = ¢, then

K
. k! ;
cr) - b (2) = E E (cir = bo(0)) mﬂfzzfiz

=0 |A|=k
- )
= Z (cﬂ bio(a)) —'/1 "z:’1 1:37133
=0 |il=k
: k! t 2 /13
+ > (e — Au(a))ﬂ) RO (14)
t=p+1 |A|=k
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Deriving (ii) with (i). There is a smoothing cofactor
q(x,y) € Py_,_ across the common boundary v,v;, such that

ut1

Po(x,y) —pi(x,y) = q(x,») - 1(x, )

where /(x,y) = 0 is the equation of v,v3, and its barycentric
coordinate over 7T is 1, = 0. So the first part of Eq. (14)
should be zero, that is

C/l’:bilo(a)v t:071>"'aﬂ

where

A =k, X =(t,70,23), I°=1(0,22,73), 2o+ 3=k —1.
Deriving (i) with (ii). It is known that

Cyp = b;o(6)7 t= 0, 1, ey Uy A= k, )v[ = (f,)y27/13),

20 =1(0,02,73), Ja+ 3=k —t

So the first part of Eq. (14) is zero. Moreover, there is a
polynomial

k
k! e
Q(T) = E Z(C}f - b;o(O’))mTi K l‘E;zT;}
t=p+1 |A=k 3
such that

c(1) = 0(2) = q(0)7)"

Obviously, ¢(7) is the smoothing cofactor across the com-
mon boundary v,v;.

Theorem 5 indicates that both the existence of the
smoothing cofactor and the smoothness conditions
obtained from the B-net method are equivalent over two
adjacent triangles. [

3.3. 8¥(4") on the star-region over triangulation

Let A" be a triangulation shown in Fig. 3, and V, be the
common vertex of triangles 7y, T,, and T3. Denote by

V.

Fig. 3. Triangle A*.

01(011,0127013)7 02(021,022,023)7 and 03(031,0327033) the
barycentric coordinates of three vertexes V3, Vi, and V,
over Ty, T,, and T3, respectively. We have

Lemma 4.
onou =1, opoy=1, on=-1, oy =o0p

(15)
03 =033, Op+010n=0, 03+0105=0

Proof. Let b(’)(r,-) (t; := (ti1,Ti2,713), i =1,2,3) be the
polynomials of degree & defining over 7;. By Lemma 3,
we have
T11 = 011T21, Ta1 = T31 + 021732,
T31 = 031T12, T3 = Ty + 032712
So
11 = 011 (T31 + 021T32) = 011731 + 011021732
= 011031712 + 011021 (T11 + 032712)
= 011021711 + (011031 + 611021032)T12

Obviously, a1;0,; = 1. Others can be proved similarly. [

2
(O] (2)
by Dy30
b(l) )
024.by5,
(2)
M b
by o5 120
b(l) )
013, by1 s
W
by, 2
% L1t
0N I
];;‘ 1) 0 00, bu.o.z
- 3)
N byos Vi
b 0,03 Y0 @)
102 biya
©)
3) b,
1) b 1.0.2
bZ.O,I 0,1,2
(3) (3)
b}(l(; ho,z_] /h;o.l
V.3 V
178 5) > 3) ) '3
bo,3,0 b3 b2.1.0 bum

1,2,0

Fig. 4. Si(a%).
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We can get some conditions of the Bézier coordinates
between two adjacent simplexes which satisfy certain
smoothness. Then we find all the conditions of the Bézier
coordinates over the whole partition. Taking S(4*) for
example (see Fig. 4), A is one of minimal determining sets

[6]for S3(4"), where |A| = 12, we mark all the control points
belonging to A with . We also have dimS! 3(4") = 12 by The-
orem 3.

Theorem 6. Suppose that V is the common interior vertex of

triangles Ty, T, and T5 in the partition A*. Let b(i>(ri)
denote polynomials of degree k defining over T;, and
S‘Ti = b(i)(‘c[), 7= (11,T2,13), i =1,2,3.  Denote by
a1, 02, and o3 the barycentric coordinates of three vertices
Vi, Vi, and Vo over Ty, T, and T3, respectively. Then
the following propositions are equivalent:

(1) s € S'(4").
(IT) There are smoothing cofactors g¢,(x,y) € Pi_,1,
i =1,2,3 such that

3

Z qi(x7y)li(x,y)#+l =0

i=l1

where /;(x,y) =0, i=1,2,3 are the equations of VyV,,
i=1,2,3.

(I11)
2 1 3 2
ng’> = bEO)/tlz A3)(0-1)’ b’(it) = bgﬂ?to '12)(0-2)’
Dy = bk (o), 1=0,1,0 (16)

Proof. The equivalence of (I) and (II) can be obtained by
Theorem 2 directly. Moreover, we can derive (I1T) with (II)
by Theorem 5.

Now we will derive (II) with (III). By the proof of
Theorem 5, we know that the expressions of ¢;,, i =1,2,3
are

k
k!
2 1 1 2 2
ql(TZ) = Z Z (bg’) - bEO?;.ZJl;)(O-l)) l!)uz!/l 'TIZIH T2§ﬁ52;

=it |7=k
(17)
_ : b(3) b(z)f k! gl 1_n3
¢:(13) = Z W (m-,O-n;)(JZ) PP S AR S
t=p+1 |y|=k =813
(18)
(1)) = Zk: SO (60— b . (03) KU e e g
73(1) = ¢ (0,¢1,¢3) i &g, [TIITIZ T3
(=1 |E=k
(19)
By Lemma 3, we have
Ty = T3+ 00T, T =0nTn, Tn=Th+0ntn (20)
Ty = 02T11, Top =Tz + 00Ty, T3 =71t3+0ontn (21)
T3 = 031T12, T =Ty +0nTn, T3 =T3+0ouTy  (22)

Using the barycentric coordinates, the
of I;(x,y) =0, i=1,2,3 are

expressions

Lx,y) =0:1 =0;
13()(,)/) =0: T = 0

Lx,y) =0: 13 =0;

Substituting Eq. (22) into Eq. (18), we have

1
0 (%, 3) b ()" = g5(13)7,
k
Z Z ) (0’31T12)"1(T11+0’32‘E12)t
S m't'
B
T Pt

t=p+1 |n|=k
k' , t n3
: ot 3 __
X ] T = > H,
t=p+l1 |y|=k i=0 j=0

k! , ;
it =i
X = ; ‘721032‘%3711 T T3
m'l'J'(t = i)l(ns — j)!

O KL e
- Z Z ('710'13) ,7 IR |‘L—311 32 33 (23)

=it jnl=k

Denote

ro=(r,r,r) = (,d,j), G=t—i,&=n—],
= (E,t,8), t=m+it+]

It is obvious that we have

m=r, t=%C +r, n=¢+r;

From Egs. (15) and (16), the representation Eq. (23) can be
simplified as

) t’! o
g, (x, ) L (x, ) = Z Z Z (M1 raéstrs)

O=p+1 |E=k |r]=r

&yt
il 't'é [ T11T12’C13

_ zk: § p (02) k! gt o
(m,03)\Y2 n 't'rl 1131032 3%
t=p+1 |n|=k 1-4-43-
k! P
_ LR
o Z Zb(0€1 &) 6 11é, |‘511112T13
f=p+1 |E|=k
k 1
_ (2) k! nmo_t _m
Z Zb(m,om)(az)n 11y 1 131732733
t=p+1 |n|=k 1+4:13

In a similar way, we have

1
@ 2) e )" = g3 (v
k |
_ (1) k! I
o Z b(o,iz,m( )W‘Cmrﬁrﬁ
t=p+1 |2=k
k
k!
B bO Tillftlzfn
t;l\qzk ) 5"5'
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and

u+1

g1 ()1 (x, )" = q,(12)75

. ( ) ' mt N
Z Z 2 i :
0 0 131732733

(m0,1) 1, 1tln;!

1 |n|=k

n+l

_ k! /2 73
0)7 A; t'i |) ] T21T221’-2%

=it |2=k
Therefore
@1 (e )1 (e 0)" "+ @ (0, ) B0 )"+ g3 y) B (x,)"
= i)t + () +gs(m)tly =0 O
By Theorem 5 and Theorem 6, we have
Theorem 7. For any given simplex partition, the smoothness

conditions obtained, respectively, by the conformality method
of smoothing cofactor and the B-net method are equivalent.
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